Method of Variations of Potential of Quasi-periodic Schrödinger Equation

نویسنده

  • JACKSON CHAN
چکیده

We study the one-dimensional discrete quasi-periodic Schrödinger equation −φ(n+ 1) − φ(n− 1) + λV (x+ nω)φ(n) = Eφ(n), n ∈ Z We introduce the notion of variations of potential and use it to define “typical” potential. We show that for “typical” C potential V , if the coupling constant λ is large, then for most frequencies ω, the Lyapunov exponent is positive for all energies E.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-periodic solutions in a nonlinear Schrödinger equation

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx +mu+ |u|4u= 0 with the periodic boundary condition is considered. It is proved that for each given constant potential m and each prescribed integer N > 1, the equation admits a Whitney smooth family of small amplitude, time quasi-periodic solutions with N Diophantine frequencies. The proof is based on a partial Birkhof...

متن کامل

Quasi-periodic Solutions of 1d Nonlinear Schrödinger Equation with a Multiplicative Potential

This paper deals with one-dimensional (1D) nonlinear Schrödinger equation with a multiplicative potential, subject to Dirichlet boundary conditions. It is proved that for each prescribed integer b > 1, the equation admits smallamplitude quasi-periodic solutions, whose b-dimensional frequencies are small dilation of a given Diophantine vector. The proof is based on a modified infinitedimensional...

متن کامل

Quasi-Periodic Solutions for 1D Schrödinger Equation with the Nonlinearity |u|2pu∗

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx + |u|2pu= 0, p ∈N, with periodic boundary conditions is considered. It is proved that the above equation admits small-amplitude quasi-periodic solutions corresponding to 2-dimensional invariant tori of an associated infinite-dimensional dynamical system. The proof is based on infinite-dimensional KAM theory, partial no...

متن کامل

Quasi-periodic solutions of Schrödinger equations with quasi-periodic forcing in higher dimensional spaces

In this paper, d-dimensional (dD) quasi-periodically forced nonlinear Schrödinger equation with a general nonlinearity iut −∆u+Mξu+ εφ(t)(u+ h(|u| 2)u) = 0, x ∈ T, t ∈ R under periodic boundary conditions is studied, where Mξ is a real Fourier multiplier and ε is a small positive parameter, φ(t) is a real analytic quasi-periodic function in t with frequency vector ω = (ω1,ω2 . . . ,ωm), and h(|...

متن کامل

Quasi-periodic Solutions of the Schrödinger Equation with Arbitrary Algebraic Nonlinearities

We present a geometric formulation of existence of time quasi-periodic solutions. As an application, we prove the existence of quasi-periodic solutions of b frequencies, b ≤ d + 2, in arbitrary dimension d and for arbitrary non integrable algebraic nonlinearity p. This reflects the conservation of d momenta, energy and L norm. In 1d, we prove the existence of quasi-periodic solutions with arbit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008